《肉类研究》2023年37卷5期刊载了华中农业大学食品科技学院的陈紫婷、陈梦婷、孙智达的论文《芬顿反应诱导的肉类蛋白质氧化及干预研究进展》。该论文由:湖北省特色农产品深加工关键技术装备及产业化示范项目(-001-03)资助。
为了更好地阐明·OH对肉类的氧化影响机制,华中农业大学食品科技学院的陈紫婷、陈梦婷、孙智达对芬顿氧化体系作用下肉类蛋白氧化的最新研究进展进行阐述,并分析芬顿氧化对肉类蛋白结构与功能的影响,同时,探讨氧化对肉类品质和营养价值的影响效果及预防方法,为肉制品抗氧化提供思路,为未来我国肉类加工提供理论支撑。
01
ROS介导的蛋白质氧化
ROS是蛋白质氧化的首要作用物质,直接引发蛋白质氧化的活性自由基包括ROS和活性氮等,它们通过夺取氢、供给氧、偶合及裂解等反应途径作用于蛋白质的主肽链骨架或氨基酸侧链,且几乎所有氨基酸侧链都可以与自由基反应。ROS不仅可直接引起蛋白质氧化,还可先诱导脂质氧化和非酶糖基化,并通过活性中间产物间接诱导蛋白质氧化。
图1为ROS(如由水的辐解或金属催化裂解产生)诱导的蛋白质氧化途径。当ROS作用于蛋白质时,会从蛋白质分子中提取氢原子以产生碳中心自由基(C·)(反应c),并引发蛋白氧化链反应,该自由基在氧气存在下转化为烷过氧自由基(RCOO·)(反应d),随后与Fe2+反应,或从另一蛋白质分子中提取氢原子,或与质子化形式的超氧化物自由基反应,生成烷基氢过氧化物(COOH)(反应f、g和h)。COOH进一步与氢过氧自由基(HO2·)或还原形式的铁(Fe2+)进一步反应形成烷氧自由基(CO·)(反应j和k)及其羟基衍生物(—COH)(反应m和n)。然而,在没有氧气的情况下,2 个碳中心自由基可以相互反应,生成碳-碳交联衍生物(反应e)。除这些途径外,烷基过氧化物和烷基自由基衍生物可以通过二胺或α-酰胺化途径进行裂解反应(反应i和l)。根据目标物和氧化剂的不同,蛋白质氧化将通过多种机制进行传递和终止,其后果包括巯基的丢失、蛋白质羰基的形成、交联的发生及芳香族氨基酸的修饰等。
02
芬顿体系氧化作用原理
在肉类食品中有3 个引发系统能够引起蛋白质氧化,包括芬顿系统、肌红蛋白系统和脂质氧化系统。特点为:1)芬顿系统,过渡金属(Fe2+、Cu2+)与H2O2反应可获取高活性·OH;2)肌红蛋白系统,高铁肌红蛋白与H2O2作用形成高铁肌红蛋白自由基;3)脂质氧化系统,脂质通过氧化衍生ROS自由基。这些自由基均可称为蛋白氧化诱发剂。最常用的氧化剂模型系统是芬顿系统,之前的研究表明,与H2O2作用生成的肌红蛋白自由基和脂质衍生的氧化剂系统相比,羟自由基氧化系统(hydroxyl radical-generating system,HRGS)对肌原纤维蛋白(myofibrillar proteins,MP)的氧化影响最为强烈,包括交联和聚集。
·OH是一种天然的强氧化剂。·OH在生物系统中通过氧化代谢自然形成,同时会形成超氧自由基,其作为不需要的副产物可以被超氧化物歧化酶去除,产物H2O2则被过氧化氢酶催化,或者在金属离子的存在下发生芬顿反应生成·OH。在所有产生·OH的途径中,由于反应的选择性,脉冲辐射分解是最重要的途径,它也是研究抗氧化剂与·OH之间反应原理以及测定其反应速率最权威的方法,但是其缺点是需要复杂的仪器和成本较高。相比来说,芬顿反应是用于产生·OH来测定抗氧化活性的最重要的化学反应(式(3))。
1931年提出了经典的自由基机制。自发表以来,关于反应机制的讨论一直都有争论。Bray等提出了一种产生铁氧基(FeO2+)的非自由基机制,其中铁处于氧化态+4价(式(4))。这种离子非常活泼,很容易氧化其他化合物。大多数证据表明·OH是主要破坏物质,但在·OH形成的过程中可能会产生其他ROS。因此,他们将经典的芬顿反应进行了拓展(式(5))。
使用分光光度法和甲基黄作为反应底物证实了这一假设。他们发现·OH和一些其他氧化物质(如高价铁)都在芬顿反应中形成,并且产物的组成及比例取决于反应的pH值。使用5,5-二甲基-1-吡咯烷N-氧化物作为芬顿反应和紫外线光解产生的·OH的自旋捕获探针获得了类似的结果。
芬顿反应的产物也可用于测定·OH清除活性。例如,使用FeCl2和H2O2作为反应物,进行经典的芬顿反应(式(1))。该反应可以通过螯合剂(如乙二胺四乙酸(ethylenedinitrilotetraacetic acid,EDTA)或二亚乙基三胺五乙酸)的存在修饰反应。EDTA也被用作脱氧核糖损伤测定中的螯合剂,用于测定·OH清除活性。研究表明,当去掉EDTA时,反应变得具有“位点特异性”,因为铁离子与脱氧核糖体分子结合,造成“现场”损伤。这种修饰后来被用于鉴定不同化合物螯合金属离子的能力,以减少·OH的产生。除Fe2+外,Fe3+还可用于生成·OH。Fe3+必须首先被还原,然后才能进行芬顿反应(式(1))。使用抗坏血酸盐后,会形成循环(式(6))。
从反应混合物中去掉H2O2,但“铁自氧化”的过程仍会产生·OH。Chen Jiwu等提出的反应机理如式(7)~(8)所示。
式(8)中形成的H2O2随后经历芬顿反应(式(2))。
研究发现,其他金属(铜或钴)也可以发生芬顿反应,当铜以铜离子(Cu2+)形式添加到芬顿反应混合物中时,由于芬顿反应总是以较低的氧化态(Cu+)开始反应,故它会以与反应式(6)中Fe3+类似的方式被还原。
还有多种方法可以用来测定·OH清除活性。例如使用细胞培养物测定。通过酵母培养物中加入抗坏血酸、H2O2和CuSO4反应生成·OH。使用RAW264.7巨噬细胞样细胞系,该细胞系被脂多糖激活并产生超氧阴离子自由基(2。这2 个反应随后形成·OH(式(9))。这种由过渡金属诱导催化的反应通常被称为“超氧化物辅助(或驱动)芬顿反应”。
使用大鼠肝微粒体研究抗氧化剂对·OH诱导的脂质过氧化的影响,还原型辅酶Ⅱ(nicotinamide adenine dinucleotide phosphate,NADPH)生成系统用于生成·OH、烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADP)、葡萄糖-6-磷酸、MgCl2和葡萄糖-6-磷酸脱氢酶。NADPH随后参与与微粒体获得的细胞色素P-450的反应。肝微粒体中形成了各种ROS,其中H2O2参与了芬顿反应和·OH的生成。
03
芬顿反应下肉类蛋白质的氧化
由于蛋白质具有许多不同的独特生物学功能,对蛋白质的氧化修饰会导致结构、功能及肉类品质的变化。在不同组成的芬顿反应中,蛋白质对·OH氧化(H2O2浓度为0~20 mmol/L)表现出高敏感性。但是相对于MP,纯化的肌球蛋白对·OH不敏感,可能是由于肌球蛋白在S1和S2区域更容易交联产生生物聚合物和蛋白质网络,这对乳化型凝胶肉制品的质地和稳定性至关重要。通过向不同浓度的·OH体系中加入MP,发现鲤鱼蛋白氧化对·OH非常敏感,MP中羰基含量增加且疏水性增加,蛋白质功能特性(表面疏水性、水结合能力、弹性)降低。而在加入不同浓度的H2O2后发现温和蛋白质氧化(冷冻贮藏和·OH)可以促进蛋白质凝胶性质。尽管·OH的加入有望促进蛋白的交联,但需要进一步的研究来确定肉类的氧化状态是否可以作为提高肉类质量的有利条件。目前研究的芬顿体系下对蛋白质的氧化主要体现在蛋白质结构、功能及肉类品质的变化上,在蛋白质结构方面涉及到氨基酸侧链的修饰、蛋白质的交联及游离氨基酸的变化。功能上则是对蛋白质的凝胶性、持水力等产生影响。蛋白质的功能特性改变导致肉类品质相应改变,而且肉类嫩度也会在·OH的作用下降低,肌红蛋白氧化后变成褐色的高铁肌红蛋白,导致肉色劣变。
对蛋白结构的影响
蛋白质氧化往往引起氨基酸侧链反应,如产生活性羰基,引起巯基丢失和形成二硫键。蛋白质羰基的变化被广泛用于评估蛋白质氧化,通常采用2,4-二硝基苯肼(2,4-dinitrophenylhydrazine,DNPH)反应进行评估。羰基可与DNPH反应生成DNPH衍生物,然后通过分光光度法测定生成的腙的量进行量化。羰基化合物的产生是氧化蛋白质最常见的变化。生成蛋白质羰基的4 条主要途径包括:1)直接氧化赖氨酸、苏氨酸、精氨酸和脯氨酸的侧链;2)还原糖存在下的非酶糖基化;3)通过α-酰胺化途径或通过谷氨酰侧链的氧化裂解肽主链;4)共价结合非蛋白质羰基化合物,如4-羟基-2-壬醛或丙二醛。在这4 种途径中,敏感氨基酸侧链的直接氧化已被证明为蛋白质羰基化的主要途径,也是对蛋白质直接氧化攻击的最有效来源。
蛋白质氧化也会造成巯基的丢失。蛋白质内巯基的含量十分丰富,其主要是多肽中半胱氨酸残基上的巯基基团。巯基和二硫键是蛋白质中反应活性最高的2 种基团,蛋白质中的游离巯基包括2 种,一种是包埋在疏水基团内的巯基,另一种是蛋白质表面的巯基。巯基基团(—SH)与Ellman试剂反应会生成在412 nm波长处有最大吸收峰的黄色物质,常用于比色法测定生物样品中巯基的含量。某些有机化合物(尿素和盐酸胍)的高浓度水溶液(4~8 mol/L)可以导致蛋白质分子氢键的断裂,蛋白质结构被破坏,从而导致蛋白质发生不同程度的变性。这些有机化合物的水溶液还可以增大疏水氨基酸残基在水溶液中的溶解度,降低疏水相互作用,从而使包埋于疏水基团内部的巯基暴露,因此可以通过加入尿素或盐酸胍测定总巯基含量。目前针对巯基检测荧光探针的各种方法,原理是利用其特异性小分子只与巯基反应,而与其他基团在相应的条件下不会发生反应。
蛋白质交联
蛋白质的氧化也可使蛋白质产生交联。蛋白质交联的产生有以下3 种原因:1)缺氧情况下,氧化后蛋白质主链形成的以碳为中心的自由基相互作用,在蛋白质分子内部和分子间产生交联;2)巯基和酪氨酸残基氧化及亚硝基化会分别产生二硫键和二酪氨酸键,二硫键是导致蛋白质交联的主要原因之一,二酪氨酸键既可以在分子内成键也可以在分子间成键,其中分子间成键是蛋白质聚合的原因之一,这是聚合导致的蛋白质交联;3)蛋白质赖氨酸氨基与氧化产生的羰基衍生物反应也能导致蛋白质交联。氧化产生的羰基也会在蛋白质内部或不同蛋白质之间与赖氨酸的氨基反应。猪肉的肌原纤维蛋白在芬顿系统或高价铁催化氧化系统中处理后,二硫键的形成导致肌球蛋白交联位点发生改变,从头部转移至尾部。肌球蛋白重链的交联位点通过二硫键位于肌球蛋白轻链中,而在鸡肉肌原纤维暴露于·OH产生系统后,在肌球蛋白重链中未发现交联。
游离氨基酸
自由基攻击蛋白质分子的机制会导致蛋白质交联、蛋白质裂解和/或氨基酸侧链的修饰,每个反应都会产生特定的氧化衍生物。尽管所有氨基酸都可以被活性氧修饰,但由于半胱氨酸、蛋氨酸中硫基的反应敏感性较高,所以最容易发生氧化变化。半胱氨酸的单电子氧化或双电子氧化可以形成类似的终产物。半胱氨酸与自由基氧化剂的单电子氧化可产生硫基,其有2 个主要途径:与其他硫醇/硫醇盐反应生成二硫化物,或与O2反应生成过氧化硫基。半胱氨酸和氧化剂之间的双电子氧化可导致亚磺酸和磺酸的形成。这些物质不稳定,可通过水解反应生成含氧酸,或通过与另一个硫醇基反应生成二硫键。类似地,蛋氨酸残基很容易被各种氧化剂氧化,蛋氨酸氧化的主要产物是亚砜,它可以进一步氧化为砜。蛋氨酸亚砜可被蛋氨酸亚砜还原酶、巯基乙醇、二硫苏糖醇等还原试剂还原为蛋氨酸。与这2 个氨基酸相比,其他氨基酸氧化需要更加严格的条件。对于芳香族氨基酸,包括组氨酸、苯丙氨酸、色氨酸和酪氨酸,主要反应是芳香族氨基酸残基的添加。蛋白质的氧化导致各种氧化衍生物的产生。蛋白质的主要氧化修饰发生在氨基酸侧链上,包括硫醇氧化、芳香羟基化和羰基的形成。
对蛋白功能特性的影响
MP的功能特性是影响肉和肉制品品质的主要因素。研究证明,蛋白质的结构与其功能特性紧密相关,因此肌肉蛋白的氧化通常会伴随着蛋白质溶解度以及凝胶性、乳化性及保水性等功能特性的改变,从而影响肉的嫩度、多汁性以及蛋白质的保水性等功能。蛋白质中的氨基酸经氧化后,其侧链基团的改变会导致蛋白肽链一级结构的变化,而羰基、共价键的形成及肽链的断裂等会进一步改变蛋白质构象,并导致蛋白质二级结构的变化,随之蛋白质的三级结构及四级结构也会发生相应的改变。从营养学角度分析,蛋白的氧化会导致必需氨基酸的损失,同时蛋白结构经氧化导致的分解或重聚均会影响蛋白质的消化性以及肉制品的营养价值,近年来,蛋白质氧化对肉制品风味的影响也逐渐引起人们的,如通过氧化途径形成的蛋白羰基及席夫碱可能会影响风味的形成,尽管如此,总结近年来的研究可以发现,蛋白质氧化并不一定总是导致蛋白质加工性能及相应功能特性的下降,适度的蛋白质氧化甚至可以改善或提高肌肉蛋白的功能特性。在4 ℃与FeCl3/抗坏血酸盐/H2O2孵育后,猪背最长肌显示出较低的持水能力。持水能力和产物产量的变化与蛋白羰基含量的增加以及肌原纤维和肌浆蛋白之间的交联一致。持水能力降低可能是由于氧化肌肉样品中相邻纤维之间的细胞外空间扩大。然而,蛋白质氧化也会对蛋白质功能产生负面影响。当暴露于3 种不同的氧化体系(螯合的3 价铁、H2O2和抗坏血酸)时,切碎的鳕鱼肌肉显示出更好的凝胶化和乳化特性,蛋白氧化后形成的凝胶剪切力和硬度分别增加70%和20%。在牛心制成的肉糜中,3 种水洗处理相比,抗氧化剂洗涤(没食子酸丙酯和α-生育酚)后的肌肉蛋白凝胶形成能力降低,蛋白质羰基含量升高。由于蛋白质氧化而增加的凝胶形成能力可能与多肽之间及蛋白质之间交联的形成有关,这些交联可以降低凝胶网络的迁移率并稳定凝胶基质内的其他非共价键。
蛋白质氧化也可诱导蛋白质聚合和聚集,从而改变其消化率,并对肌肉食品的营养价值产生负面影响。蛋白质氧化可以改变蛋白质内的分子间和分子内相互作用,从而影响它们的构象。由于三级结构的变化,这些变化通常可以增加蛋白质的表面疏水性。此外,蛋白质氧化与二聚体、三聚体和多聚体的形成,以及其他相互间和内部的交联有关,这样的结果可以进一步导致蛋白质聚集,从而影响肉的品质。
对肉类品质的影响
动物屠宰后,维持自身抗氧化防御系统的能力大大降低,自由基不断在体内积累,氧化应激水平增加,从而导致蛋白质氧化,影响蛋白质的特性,包括蛋白质交联、溶解度的变化,进而引起肉的嫩度、持水性、色泽等品质的变化。蛋白质对肉类品质的影响机制见图2。
蛋白质氧化对肉制品嫩度的作用有两方面:一是减少蛋白质在氧化过程中的水解,这种机制可能是蛋白质氧化过程中参与肉类嫩化的蛋白水解酶的失活和蛋白氧化导致蛋白水解敏感性降低,由于μ-钙蛋白酶和m-钙蛋白酶在其活性位点同时含有组氨酸和含巯基的半胱氨酸残基,此类基团的氧化降解可能导致酶失活;二是通过二硫键和诱导蛋白交联来影响肉的嫩度,蛋白质交联将增强肌原纤维结构,从而导致肌肉组织的韧性增加。并且肉的功能特性直接影响其质地、风味、嫩度等食用品质。肌肉中含有极不稳定的肌红蛋白,包括氧合肌红蛋白、高铁肌红蛋白及脱氧肌红蛋白,肌红蛋白含量和比例决定肌肉的颜色。高铁肌红蛋白与蛋白氧化密切相关。在低氧条件下,脱氧肌红蛋白和氧合肌红蛋白都容易被氧化为褐色的高铁肌红蛋白,而高铁肌红蛋白还原酶可以持续地将高铁肌红蛋白还原,保持肉颜色的稳定性,在高氧浓度(70%~80%)条件下,使肉表面的肌红蛋白氧合为鲜红的氧合肌红蛋白,有利于改善肉色,在鲜肉的包装中被广泛应用。蛋白质氧化主要通过以下几种途径对肉中蛋白质的营养价值产生影响:一方面,蛋白质氧化会产生羰基化、亚硝基化、羟基化等氨基酸侧链修饰,造成必需氨基酸的损失;另一方面,蛋白质之间的交联聚合反应会使蛋白质对消化酶的敏感性降低,造成蛋白质消化率下降;最后,高水平的氧化还会导致蛋白质变性沉淀,蛋白质的溶解度及生物利用度降低,从而使肉类蛋白质的营养价值降低。此外,蛋白质片段化还会造成α-酰胺化,产生二酰胺,使肉的食用安全性降低,甚至会增加人体细胞毒性和致突变性,危害人体健康。研究发现,蛋白质氧化过程中,对氧化敏感的氨基酸受到氧化修饰,使氨基酸的生物利用度降低,引起蛋白质聚集,导致消化率下降,从而降低肉的营养价值,但轻度水平的氧化可使蛋白质更易被相应的蛋白酶消化。研究发现,蛋白质氧化造成的羰基化会导致赖氨酸、苏氨酸和精氨酸等必需氨基酸的不可逆修饰,从而造成必需氨基酸的损失。一般认为,钙蛋白酶系统负责调节宰后肌肉中蛋白质的降解,并且与宰后贮藏期间的肉嫩度和持水量有关,钙蛋白酶系统由m-钙蛋白酶和μ-钙蛋白酶及其抑制剂钙蛋白酶抑制剂组成。钙蛋白酶在钙的存在下自溶,这种自溶表明它们在宰后的肌肉蛋白水解后被激活。由于m-钙蛋白酶和μ-钙蛋白酶均为半胱氨酸蛋白酶,氧化可能会调节它们的蛋白水解活性,从而影响鲜肉质量。进一步确定氧化对纯化的m-钙蛋白酶和μ-钙蛋白酶活性的影响以及μ-钙蛋白酶和钙蛋白酶抑制剂之间的相互作用。结果表明:μ-钙蛋白酶和m-钙蛋白酶的蛋白质水解活性在不同pH值(6.0、6.5、7.5)条件下被H2O2诱导的氧化所抑制,H2O2在pH 6.5和7.5条件下降低了钙蛋白酶抑制剂对钙蛋白酶活性的抑制效果,并允许μ-钙蛋白酶在钙蛋白酶抑制剂存在下降解蛋白。这些研究强有力地表明蛋白质氧化通过介导钙蛋白酶的自溶和蛋白水解活性影响鲜肉品质。
04
蛋白质氧化的干预和抑制
在工业生产中,通常使用抗氧化剂来减少蛋白质氧化。添加合成抗氧化剂是工业中常用的一种保持肉品品质的方法。人工合成抗氧化剂的毒副作用较大,对人体的器官(肝、脾、肺)均有负面影响,由于天然抗氧化剂与合成抗氧化剂相比具有潜在的健康益处,天然抗氧化剂的需求正在增加。天然抗氧化剂广泛分布于植物、动物组织和微生物中。大多数天然抗氧化剂都是从植物中获得的。在肉和肉制品中添加多酚或天然提取物是减少蛋白氧化和变质的一种有效方法。研究表明,天然抗氧化剂能有效增加蛋白质的稳定性,白藜芦醇在鱼油中能使蛋白质消化率显著增加,白藜芦醇的掺入显著增强了鱼油在氧化应激下的稳定性。在冷却猪肉中加入500 mg/kg皮燕麦多酚提取物,发现添加皮燕麦多酚可以在一定程度上减少羰基的形成和防止巯基在冷藏过程中的丢失,有效延缓MP氧化,多酚通过与MP共价交联结合阻碍了氧化剂的作用部位,或者有效清除了活性氧自由基,阻断蛋白质羰基链式反应,抑制羰基的形成。将桑葚多酚加入肉制品中,发现桑葚多酚可以显著延缓羰基的形成,通过增强的离子键和弱化的氢键、疏水键和二硫键来提高蛋白质稳定性。还有研究认为,添加天然抗氧化剂还能有效改善冷冻肉制品质量,通过抑制蛋白质羰基的积累有效延缓蛋白质的氧化,从而减缓冷冻肉类品质的降低。除抗氧化特性外,大多数天然抗氧化剂在肉类中的应用是多功能的,它们在肉类加工和贮藏过程中不仅起到抗氧化作用,还有抑菌防腐、促进有益微生物生长等作用,柠檬草可以提高日本鹌鹑体内乳酸菌的浓度。百里香醇是百里香的主要成分之一,含量高达40%~80%,有助于抗菌和抗氧化活性。应用百里香精油改良剂抑制了熏马肉香肠中有害微生物(肠杆菌科)的生长。因此,这种单萜烯衍生物已被用作食品和医药用途的防腐剂、抗氧化剂和抗菌剂。
与合成抗氧化剂相比,天然提取物可能更容易被消费者和监管机构接受,也更有利于人体健康。因此这些天然抗氧化剂可以用作肉类中的多功能添加剂,尽管已经有很多天然抗氧化剂广泛应用于食品中,但仍有必要研究在肉制品中使用此类天然提取物的安全性和可接受性。
05
结 语
蛋白氧化的机制尚不完全明晰,在芬顿体系中研究蛋白氧化能让蛋白氧化机理研究更加深入。总体来说,蛋白质氧化弊大于利。因此,在肉的生产和加工过程中,应尽量减少自由基对蛋白质氧化的作用,从而减少对肉品质造成的负面影响。然而,关于蛋白质氧化对肉品质影响的机制及蛋白质氧化作用机制的研究依然是一个巨大的挑战。随着对蛋白质氧化研究的深入,降低活性自由基的影响,或者考虑如何利用而不是单纯抑制,可作为未来研究的重点。此外,关于氧化后肉制品加工后的品质也值得进一步研究。
引文格式:
通信作者介绍
孙智达,致公党员,教授,博士生导师。从事天然产物化学、食品安全的研究与教学工作。先后承担和参加过国家自然科学基金,863、省、部级重点科技攻关及横向项目10余项,通过成果验收1 项,其中"莲科植物中原花青素的绿色提取技术及高附加值产品的开发"获2007年度教育部科技进步一等奖,排名第二。在J. Agri. Food Chem.、Food Chem.及《农业工程学报》、《食品科学》和《中国粮油学报》及其他科学期刊发表相关论文50余篇。作为参编者在科学出版社出版《食品化学》,中国农业出版社出版《食品分析及感官评定》、《仪器分析》专著3 部。获国家发明专利8 项。
专辑约稿
“肉品质量安全与检测技术”|专辑主编张岩研究员
“肉品品质变化及其机制机理研究”|专辑主编臧明伍教授级高级工程师
“肉类微生物多样性与肉制品风味分析”|专辑主编徐宝才教授
“肉品及其副产物加工及高值化利用”|专辑主编王道营研究员
新刊启动 Food Science of Animal Products《动物源食品科学》(英文),欢迎投稿
Food Science of Animal Products(ISSN: 2958-4124, e-ISSN : 2958-3780)是一本国际同行评议、开放获取的期刊,由北京食品科学研究院、中国肉类食品综合研究中心主办,中国食品杂志社《食品科学》编辑团队运营,属于食品科学与技术学科,旨在报道动物源食品领域最新研究成果,涉及肉、水产、乳、蛋、动物内脏、食用昆虫等原料,研究内容包括食物原料品质、加工特性,营养成分、活性物质与人类健康的关系,产品风味及感官特性,加工或烹饪中有害物质的控制,产品保鲜、贮藏与包装,微生物及发酵,非法药物残留及食品安全检测,真实性鉴别,细胞培育肉,法规标准等。
投稿网址:
https://www.sciopen.com/journal/2958-4124
参考资料: